### Computing Competitive Equilibrium for Chores: Linear Convergence and Lightweight Iteration



### Chonghe Jiang

#### The Chinese University of Hong Kong

Joint Work With He Chen and Anthony Man-Cho So

WINE, 2024

Background

DCA for Computing CE for Chores

SGR for Computing CE for Chores

**Numerical Results** 

### Background

**DCA for Computing CE for Chores** 

SGR for Computing CE for Chores

**Numerical Results** 

## **Economic Background: Allocation of Chores**

There are many settings when we need to (fairly) allocate shared chores to users.

- ◊ Job shifts among workers.
- Papers among reviewers.



Figure 1: Teaching load among faculty

## Fair Chores Allocation $\Rightarrow$ CE for Chores

#### Definition (Competitive Equilibrium for Chores)

A price  $p \in \mathbb{R}^m_+$  and an allocation  $x \in \mathbb{R}^{n \times m}_+$  satisfy competitive equilibrium (CE) if and only if (E1).  $p^{\mathsf{T}}x_i = B_i$  for all  $i \in [n]$ ; (E2).  $d_i^{\mathsf{T}}x_i \leq d_i^{\mathsf{T}}y_i$  for all  $y_i \in \mathbb{R}^m_+$  such that  $p^{\mathsf{T}}y_i \geq p^{\mathsf{T}}x_i$ , for all  $i \in [n]$ ; (E3).  $\sum_{i \in [n]} x_{ij} = 1$  for all  $j \in [m]$ .

**Remark**: Condition (E2) says that agent *i* minimizes his disutility under his expected amount. This is equivalent to that agent *i* only chooses chores from the set  $\arg \max_{j} \{\frac{p_j}{d_{ij}}\}$ . **Remark**: CE for chores  $\Leftrightarrow$  Agent optimality + Market clearance.

## From Exact CE to $\epsilon$ -CE

### **Definition (Approximate CE for Chores)**

A price  $p\in\mathbb{R}^m_+$  and an allocation  $x\in\mathbb{R}^{n\times m}_+$  satisfy  $\epsilon\text{-CE}$  if and only if

(E1). 
$$(1-\epsilon)B_i \leq p^{\mathsf{T}}x_i \leq \frac{1}{1-\epsilon}B_i$$
 for all  $i \in [n]$ ;

(E2). 
$$(1-\epsilon)d_i^{\mathsf{T}}x_i \leq d_i^{\mathsf{T}}y_i$$
 for all  $y_i \in \mathbb{R}^m_+$  such that  $p^{\mathsf{T}}y_i \geq p^{\mathsf{T}}x_i$ , for all  $i \in [n]$ ;

(E3). 
$$1 - \epsilon \leq \sum_{i \in [n]} x_{ij} \leq \frac{1}{1 - \epsilon}$$
 for all  $j \in [m]$ .

Remark: Even when  $\epsilon$  is very small, an  $\epsilon$ -CE can still be far from an exact CE [Chaudhury et al., 2024]!

# **CE** for Chores $\Leftrightarrow$ KKT of Problem (CE)

| $\max_{\beta \in \mathbb{R}^n_+, p \in \mathbb{R}^m_+}$ | $\sum_{j \in [m]} p_j - \sum_{i \in [n]} B_i \log B_i$ | $\mathrm{g}(eta_i)$ (CE | .) |
|---------------------------------------------------------|--------------------------------------------------------|-------------------------|----|
| subject to                                              | $p_j \leq \beta_i d_{ij} \qquad \forall \ i \in$       | $\in [n], j \in [m].$   | '  |

| Algorithm                                                 | Result                                              | Remark                      |
|-----------------------------------------------------------|-----------------------------------------------------|-----------------------------|
| Polynomial-time algorithm<br>[Garg and Végh, 2019]        | PPAD-hardness<br>in the exchange model              | Contrast with goods setting |
| First-order methods<br>[Bogomolnaia et al., 2017]         | Converge to the boundary                            | Undesirable<br>allocation   |
| Combinatorial algorithm<br>[Chaudhury and Mehlhorn, 2018] | Time complexity $	ilde{\mathcal{O}}(nm/\epsilon^2)$ | Numerical<br>issue          |
| Exterior-point method<br>[Boodaghians et al., 2022]       | $	ilde{\mathcal{O}}(n^3/\epsilon^2)$ QPs            | <i>ϵ</i> -CE                |
| Greedy Frank-Wolfe<br>[Chaudhury et al., 2024]            | $	ilde{\mathcal{O}}(n/\epsilon^2)$ LPs              | <i>ϵ</i> -CE                |

Table 1: Prior Arts in Computing CE for Chores

## Motivations of Our Work

#### **Questions:**

- How can we move closer to the exact CE for chores?
- How can we avoid solving subproblems when computing CE for chores?

# Our Answers - Problem Reformulation Step 1: Add redundant constraint [Chaudhury et al., 2024]:

$$\min_{\substack{p \in \mathbb{R}^m_+ \\ \text{subject to}}} \sum_{i \in [n]} B_i \log \left( \max_{j \in [m]} \left\{ \frac{p_j}{d_{ij}} \right\} \right) \\
\text{subject to} \sum_{j \in [m]} p_j = \sum_{i \in [n]} B_i.$$
(CE-1)

Step 2: Remove constraint:

$$\min_{p \in \mathbb{R}^m_+} \quad \sum_{i \in [n]} B_i \log \left( \max_{j \in [m]} \left\{ \frac{p_j}{d_{ij}} \right\} \right) - \sum_{i \in [n]} B_i \log \left( \sum_{j \in [m]} p_j \right). \quad (\mathsf{CE-2})$$

Step 3: Variable replacement:

$$\min_{\mu \in \mathbb{R}^m} \quad \sum_{i \in [n]} B_i \max_{j \in [m]} \left\{ \mu_j - \log(d_{ij}) \right\} - \sum_{i \in [n]} B_i \log\left(\sum_{j \in [m]} e^{\mu_j}\right).$$
(DC)

### Background

### DCA for Computing CE for Chores

SGR for Computing CE for Chores

**Numerical Results** 

## Approximating *g*: DCA Difference-of-Convex Algorithm

The problem (DC)

$$\min_{\mu \in \mathbb{R}^m} \quad f(\mu) - g(\mu)$$

where

$$f(\mu) \coloneqq \sum_{i \in [n]} B_i \max_{j \in [m]} \left\{ \mu_j - \log(d_{ij}) \right\} + \frac{\eta}{2} \|\mu\|^2,$$
$$g(\mu) \coloneqq \sum_{i \in [n]} B_i \log\left(\sum_{j \in [m]} e^{\mu_j}\right) + \frac{\eta}{2} \|\mu\|^2.$$

In each iteration, we solve

$$\min_{\mu \in \mathbb{R}^m} \quad f(\mu) - \nabla g(\mu^k)^{\mathsf{T}} (\mu - \mu^k)$$

## Main Theorem for DCA

#### Theorem (Local Linear Convergence)

Let  $\{\mu^k\}_{k\geq 0}$  be the sequence generated by the DCA with regularization coefficient  $\eta$ . Then  $\{\mu^k\}_{k\geq 0}$  converge R-linearly to a stationary point.

- ♦ Sufficient descent  $F(\mu^{k+1}) - F(\mu^k) \le -\frac{\eta}{2} \|\mu^k - \mu^{k+1}\|^2$
- ♦ **Relative error**  $\exists u^{k+1} \in \partial F(\mu^{k+1}), ||u^{k+1}|| \le (\eta + \sum_{i \in [n]} B_i) ||\mu^{k+1} - \mu^k||$
- ♦ Lower boundedness  $\mathbf{1}^{\mathsf{T}} \mu^k \equiv \mathbf{1}^{\mathsf{T}} \mu^0$
- Local regularity

### **Further Remarks - Local Regularity**

### Theorem (Local Error Bound)

Let  $\mathcal{U}^*$  be the set of stationary points of (DC) and  $\bar{\mu} \in \mathcal{U}^*$ . There exist constants  $\delta > 0$  and  $\tau > 0$  such that for all  $\mu$  with  $\|\mu - \bar{\mu}\| \leq \delta$ ,

dist  $(\mu, \mathcal{U}^*) \leq \tau$  dist  $(0, \partial F(\mu))$ .

### Theorem (KL exponent of 1/2)

Problem (DC) satisfies the KL property with an exponent of 1/2, *i.e.*, for every  $\bar{\mu} \in \mathbb{R}^m$ , there exist constants  $\epsilon, \eta, \nu > 0$  such that

 $F(\mu) - F(\bar{\mu}) \leq \eta \cdot \operatorname{dist} (0, \partial F(\mu))^2,$ 

whenever  $\|\mu - \bar{\mu}\| \leq \epsilon$  and  $F(\bar{\mu}) < F(\mu) < F(\bar{\mu}) + \nu$ .

### **Further Remarks - Computation**

### Subproblem of DCA

$$\begin{split} \min_{\lambda \in \mathbb{R}^{m \times n}_{+}} \quad & \frac{1}{2} \sum_{j \in [m]} \| \sum_{i \in [n]} \lambda_{ij} - \frac{1}{\eta} \nabla_j g(\mu^k) \|^2 + \log(D) \bullet \lambda \\ \text{subject to} \quad & \sum_{j \in [m]} \lambda_{ij} = \frac{1}{\eta} B_i, \ \forall i \in [n]. \end{split}$$

- ♦ Projected gradient descent  $\Rightarrow$  lightweight projection.
- $\diamond$  Mirror descent  $\Rightarrow$  analytical update.

Background

**DCA for Computing CE for Chores** 

### SGR for Computing CE for Chores

**Numerical Results** 

# Approximating f: SGR Smoothing Gradient Descent with Rounding

Approximating  $\max$  via entropy term

$$\begin{split} \min_{\mu \in \mathbb{R}^m} \quad \sum_{i \in [n]} B_i \max_{\lambda_i \in \Delta_m} \left\{ \sum_{j \in [m]} \lambda_{ij} \left( \mu_j - \log(d_{ij}) \right) \\ &- \delta \lambda_{ij} \log(\lambda_{ij}) \right\} - \sum_{i \in [n]} B_i \log\left( \sum_{j \in [m]} e^{\mu_j} \right) \\ \min_{\mu \in \mathbb{R}^m} \quad F_\delta(\mu) \coloneqq \delta \sum_{i \in [n]} B_i \log\left( \sum_{j \in [m]} e^{\frac{\mu_j - \log(d_{ij})}{\delta}} \right) - \sum_{i \in [n]} B_i \log\left( \sum_{j \in [m]} e^{\mu_j} \right) \end{split}$$

### Fact (Properties of $F_{\delta}$ )

The following properties hold: (i)  $F \leq F_{\delta} \leq F + \delta \log(m) \sum_{i \in [n]} B_i$ , (ii)  $\nabla F_{\delta}(\mu)$  can be evaluated in  $\mathcal{O}(mn)$  time, (iii)  $\nabla F_{\delta}$  is  $\sum_{i \in [n]} B_i(1/\delta + 1)$  Lipschitz continuous.

## Next Step: Guarantee for Gradient Descent?

### Lemma ( $\epsilon$ -CE and $\nabla_j F_{\delta}(\mu)$ )

Let 
$$q_j(\mu) \coloneqq \sum_{i \in [n]} B_i e^{\mu_j} / \sum_{j \in [m]} e^{\mu_j}$$

 $|\nabla_j F_{\delta}(\mu)/q_j(\mu)| \le \epsilon$  for all  $j \in [m]$ , and  $\epsilon \ge (1.3 + \log(m-1))\delta$ .

Then (p, x) with  $p_j = q_j(\mu)$  and  $x_{ij} = v_{ij}/p_j$  is an  $\epsilon$ -CE.

Remark: We need rounding to derive the nonasymptotic results!

#### Fact (Basis for Rounding)

Suppose that  $\delta \leq 1/(2 + \log(m - 1))$  and  $q_{j_0}(\mu) < e^{\underline{\mu}_{\delta}}$ , where

$$\underline{\mu_{\delta}} \coloneqq \log\left(\frac{\sum_{i \in [n]} B_i}{2m}\right) - \frac{1+\delta}{1-\delta} \log\left(\frac{\max_{ij}\{d_{ij}\}}{\min_{ij}\{d_{ij}\}}\right) - \delta \log(4m).$$

Then  $\nabla_{j_0} F_{\delta}(\mu) < 0.$ 

## From Rounding to Non-Asymptotic Results

### Lemma (Rounding)

Rounding algorithm stops in m steps and outputs vector  $\mu \in \mathbb{R}^m$ (i)  $\mathbf{1}^{\mathsf{T}}\mu = \mathbf{1}^{\mathsf{T}}\mu^0$ ; (ii)  $F_{\delta}(\mu) \leq F_{\delta}(\mu^0)$ ; (iii)  $q_j(\mu) \geq e^a$  for all  $j \in [m]$ .

#### Theorem (Non-Asymptotic Results)

The SGR finds an  $\epsilon$ -CE in at most  $\tilde{O}(\frac{m^2}{\epsilon^3})$  iterations, and the total complexity is at most  $\tilde{O}(\frac{m^3(n+m)}{\epsilon^3})$ .

Background

**DCA for Computing CE for Chores** 

SGR for Computing CE for Chores

**Numerical Results** 

## **Numerical Results**



**Figure 2:** CPU Time Comparison under Different Generative Models,  $\epsilon = 0.01$ .

Background

**DCA for Computing CE for Chores** 

SGR for Computing CE for Chores

**Numerical Results** 

## **Closing Remarks**

### This paper:

- ✓ DCA: Linear convergence to exact CE.
- $\checkmark$  SGR: Subproblem-free algorithm for computing  $\epsilon$ -CE.

### **Future directions:**

- ? CE for chores: extension to different utility function in computing CE for chores.
- $\checkmark$  CE for goods: working paper by our group.
  - ? CE for X: efficient algorithm for more complex market [Jalota et al., 2023].

# Thanks!

chjiang@link.cuhk.edu.hk

## References I

Bogomolnaia, A., Moulin, H., Sandomirskiy, F., and Yanovskaya, E. (2017). Competitive division of a mixed manna. Econometrica, 85(6):1847-1871.

Boodaghians, S., Chaudhury, B. R., and Mehta, R. (2022). Polynomial time algorithms to find an approximate competitive equilibrium for chores

In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2285–2302. SIAM.



Chaudhury, B. R., Kroer, C., Mehta, R., and Nan, T. (2024). Competitive equilibrium for chores: From dual Eisenberg-Gale to a fast, greedy, LP-based algorithm.



Chaudhury, B. R. and Mehlhorn, K. (2018). Combinatorial algorithms for general linear Arrow-Debreu markets. In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science.

Garg, J. and Végh, L. A. (2019). A strongly polynomial algorithm for linear exchange markets. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 54-65.

## **References II**



Jalota, D., Pavone, M., Qi, Q., and Ye, Y. (2023).

Fisher markets with linear constraints: Equilibrium properties and efficient distributed algorithms.

Games and Economic Behavior, 141:223-260.