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Economic Background: Allocation of Chores

There are many settings when we need to (fairly) allocate shared
chores to users.

¢ Job shifts among workers.

o Papers among reviewers.
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Figure 1: Teaching load among faculty
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Fair Chores Allocation = CE for Chores

Definition (Competitive Equilibrium for Chores)

A price p € R™" and an allocation x € R satisfy competitive

equilibrium (CE) if and only if

(E1). p'z; = B; for all i € [n];

(B2). d]z; < d]y; for all y; e RT" such that pTy; > p'a;, for all
i€[n];

(E3) Zze[n] Tij = 1 for all ] € [m]

Remark: Condition (E2) says that agent ¢ minimizes his disutility

under his expected amount. This is equivalent to that agent 7 only
D
chooses chores from the set arg maxj{#j}.

Remark: CE for chores < Agent optimality + Market clearance.
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From Exact CE to «-CE

Definition (Approximate CE for Chores)

A price p € R7" and an allocation x € R?*™ satisfy e-CE if and only

if

(E1). (1-€)Bi<p'w; < {=B; for all i € [n];

(E2). (1-e€)dxz; <d]y; for all y; e R} such that pTy; > p'a;, for
all i € [n];

(E3). 1-€< Y] Tij < = for all j € [m].

Remark: Even when € is very small, an e-CE can still be far from

an exact CE [Chaudhury et al., 2024]!
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CE for Chores < KKT of Problem (CE)

max Y. pj— Y, Bilog(:)
BeRY peRY je[m] i€[n] (CE)
subject to  p; < Bid;; Vie[n],je[m].
Algorithm Result Remark

Polynomial-time algorithm
[Garg and Végh, 2019]

PPAD-hardness
in the exchange model

Contrast with
goods setting

First-order methods Converge to Undesirable
[Bogomolnaia et al., 2017] the boundary allocation
Combinatorial algorithm TimNe complexity Numerical
[Chaudhury and Mehlhorn, 2018] O(nm/e®) issue
Exterior-point method ~, 3,9
[Boodaghians et al., 2022] O@n7/€) QPs «CE
Greedy Frank-Wolfe @(n/ez) LPs .CE

[Chaudhury et al., 2024]

Table 1: Prior Arts in Computing CE for Chores
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Motivations of OQOur Work

Questions:
¢ How can we move closer to the exact CE for chores?

¢ How can we avoid solving subproblems when computing CE
for chores?
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Our Answers - Problem Reformulation
Step 1: Add redundant constraint [Chaudhury et al., 2024]:

;gérﬂll Z B;log (max e[m ]{%})
R (CE-1)
subject to Z Dj = Z B;.
je[m] i€[n]
Step 2: Remove constraint:
;gérzll %;]B i log (jme[ag({ }) Z B; log( Z p]) (CE-2)
Step 3: Variable replacement:

min Z B; max {,u]—log(dlj)} Z B; log( Z 6’”3) C)

peRe [n] je[m]
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Approximating g: DCA
Difference-of-Convex Algorithm

The problem (DC)
min - f(u) = g(n)

peR™

where

f(u) = Z B; ]maX {M] IOg(dw)} + _”MH2
i€[n]

p)y= Y. Bilog( > e”j)+gullz-
i je[m]

€[n]

In each iteration, we solve

min  f(u) = V(") (u-p")
e
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Main Theorem for DCA

Theorem (Local Linear Convergence)

Let {1/F} 150 be the sequence generated by the DCA with
regularization coefficient n. Then {,uk trso converge R-linearly to a
stationary point.

o Sufficient descent

F(uM*h) = F(u*) < =3 = p* )2
¢ Relative error

3 M e OF (ph), [uF ] < (0 + Siepny Bi) |6 = ]
o Lower boundedness

1T,uk‘ = 1T'LL0

o Local regularity
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Further Remarks - Local Regularity

Theorem (Local Error Bound)

Let U™ be the set of stationary points of (DC) and ji e U*. There

exist constants § >0 and T > 0 such that for all p with |pu— | <9,

dist (p,U™) < 7dist (0,0F (p)) .

Theorem (KL exponent of 1/2)

Problem (DC) satisfies the KL property with an exponent of 1/2,
i.e., for every i € R™, there exist constants €,n,v > 0 such that

F(u) - F(n) <n-dist (0,0F (1)),

whenever | — | <€ and F(p) < F(u) < F(p) +v.
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Further Remarks - Computation

Subproblem of DCA

. 1
min =

1 k
g PR DIRTE Eng(u )[[? +log(D) e A

je[m] ie[n]

1
subject to Z Nij = —B;, Vie[n].
jefmy 1

o Projected gradient descent = lightweight projection.

o Mirror descent = analytical update.
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Approximating f: SGR
Smoothing Gradient Descent with Rounding

Approximating max via entropy term

min Z B; max {Z )\2] (/ij log(dl]))

peRm T N

—5)\ijlog(/\ij)}— ZBiIOg( Z e“f).

ie[n] je[m]
log(d”) )
min Fg(ﬂ)-dZBlog(Ze 3 ) ZBilog(Ze’”).
Het i<[n] jem i€[n] je[m)
Fact (Properties of Fj)

The following properties hold:

(i) F'< F5 < F +dlog(m) Yien) B

(ii) VFs(p) can be evaluated in O(mn) time,

(iil) VFs is Yiern) Bi(1/6 + 1) Lipschitz continuous.
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Next Step: Guarantee for Gradient Descent?
Lemma (e-CE and V;F5(p))
Let q;(p) = Xiern) Bi€! [ X jepmy €7

|V;iFs(w)/q;(n)| <€ forall j€[m], and e > (1.3 +log(m —1))d.
Then (p,x) with p; = q;(1) and x;; = vij/p; is an e-CE.
Remark: We need rounding to derive the nonasymptotic results!

Fact (Basis for Rounding)
Suppose that § <1/(2+log(m —1)) and gj,(1) < ek, where

ZiE[n] B; 1+ 5 maxij{dij}
1 5 minij{dij}

::1
o= on (S

) —dlog(4m).

Then VjOF(;(,u) <0.
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From Rounding to Non-Asymptotic Results

Lemma (Rounding)

Rounding algorithm stops in m steps and outputs vector p € R™
(1) 1TM =17 0].

(i) F3(u) < Fy(u0);

(i) g;(p) > e* for all j € [m].

Theorem (Non-Asymptotic Results)

The SGR finds an e-CE in at most (’N)(?—;) iterations, and the total
m3(n+m) )
- .

complexity is at most (5(6—
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Numerical Results
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Figure 2: CPU Time Comparison under Different Generative Models, €

= 0.01.
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Closing Remarks

This paper:

v~ DCA: Linear convergence to exact CE.

v~ SGR: Subproblem-free algorithm for computing e-CE.
Future directions:

? CE for chores: extension to different utility function in
computing CE for chores.

v~ CE for goods: working paper by our group.

7 CE for X: efficient algorithm for more complex market
[Jalota et al., 2023].
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